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RADCTDR-61 -331f November 156!4

EHERATA - JAI#RY 1965

The fofloving errors bave 'beena noted ini -he dexrivLtons of the formalas
aering, in Part nI of RADC-TD~M4-33!, "Deslgn ot ketal S'pace Frtame Radomes,"

daed Nv6uerý 19i . ic th ey occu in the derivetions thei L-:ecei
reflected throughout' Part 1'I and their correction vill recqjzire .subetamtleJ
rewriting,- The revision vill hopefully be available "by May 1965.

-~ N
Page 75, Equtin (3.Thlu equation, 4I11lR 2t.." 2wZL sol

N

read 4g7R 2kt = 1/20wd L.Is to aiccouet for trunotci;o' of

the sphereý.

Page 75., Equation (5). This evsuatioa Us~ sshould a'ead5

ts. 'Vid.

Page 82,9 Equation (31). 11he termi Psemuld be twice t6he densitry of theý
actual material used in the radome members siznce t Is representative. oil half
the actual volume of material in the renfbe-_.'e.

Page 806,. Equation (Ua%. *The n2 in thi_ dsn-omiew.haorm of the s-asozd tinM
of this equatton, should be 2.

page, 86., Ecratio.n (41). 7-af.s equstion is based u-pon an Euler 17cking
stress for a V~xed endead colur~n. Sinc~e you caznnot aichieve com-plete fixtc a
the ends of the radome mem~bers this is con-)sidered too llibexral Wn a~suinpt-1c'n.
The more conservative atproach -would be t., assume the members as pin ended.

Deve-lorznent, Engineering Branch
Rome A-r DYe-valo~pment Cex-ter
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Griffiss Air Force Base,. New York
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hrvaluation

This contractual effort resulted in the development of two classes of
theoretical tools heretofor not available to the radome designer -

1. Simplified formulas, charts and graphs for computing the insertion
loss, side lobe perturbation, and boresight shift caused by a metal space
frame radome. Whereat these computations formerly required extensive time
and computer serices, they now may be performed in a timely fashion by
ordinary desk computational techniques. This allois us to make analytical
checks on radome performance which until this time, have not been possible
on a practical working basis.

2. An integrated electromagnetic - structural design procedure for
metal space frame radomes. The design is conducted within simultaneous
structural and electromagnetic constraints resulting in a prescribed
electrical transmission loss Coupled with a prescribed level of structural
integrity at minimum practical weight. Previous radome design procedure
has been an iterative proc,.ss -of structural design v.s. electromagnetic
checks until an acceptable design was achieved.

The two techniques described above represent -a large step in a long range
program to convert ground radome design to a practical engineering procedure
which is not dependent upon extensive computer programs and electromagnetic
testing.

This information will be made available, through distribution of the final
report~to those agencies and firms involved in the design and/or application
of rigid ground radomes.

ROBERT B. CURTIS
Project Engineer

AIR FORCE, GAFB. N.Y., 4 DEC C4-117



ABSTRACT

PART I - Design graphs, formulas and procedures for the design and evalu-

ation of the electrical performance of metal space frame radomes is pre-

sented covering specifically transmission loss, boresight error, and side-

lobe variation. The relative merits of metal and dielectric elements is

analyzed.

PART II - The study consists of developing a straight forward simple pro-

cedure for the optimum sizing of solid beam elements for large space frame

radomes. Equations were derived expressing the relationship between the

element dimensions necessary to satisfy a prescribed electrical transmission

loss and the structural integrity of the space frame. These equations, con-

sidered as design constraints, were utilized in the selection of the element

size which satisfied a defined optimum criterion. Two optimization criteria

were adopted: first, the minimization of the transmission loss subject to a `4

constraint of structural integrity and, second, the reduction of the total struc-

tural weight of the elements which simultaneously satisfy the transmission

loss and structural constraint.

A sample design computation was conducted as an example of the

procedure. The second optimization criterion was applied to a 150 foot diam-

eter radome which was required to sustain 150 mph winds. A procedure for

implementing the first optimization criterion employing the method of

Lagrangian multipliers was presented resulting in four equations to be solved

si~multaneously.
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PART I

SYMBOLS
(also used in Appendix)

1. G - relative power loss due to space frame radome

2. p - blocking area ratio of space frame radons, i. e. ratio of projected
area of space frame to area of reflector

3. g - the induced field ratio of a scatterer, i. e., the field strength in
the projected blocking area of the scatterer which would produce
the actual scattered far field produced by the scatterer, divided
by the incident field strength

4. W - width of scattering element

5. d - depth of scattering element

6. L - average length of scattering element
7. g , gt" values of g when the polarization of the incident field is

respectively longitudinal- and transverse tothe length of the element

8. X - free space wavelength

9. f - frequency of electromagnetic radiation

10. c - parameter depending on curvature of radome

11. D - hub diameter also, in context, the dish aperture diameter

12. - blocking area ratio of the hubs

13. t, - dielectric constant relative to free space value and thickness,
respectively, of skins

14. r, q - polar coordinates in the antenna aperture

15. 0 (r,)- phase error at (r,q)

16. 9, 9' - boresight shift in radians due to a phase error

17. Orms - rms boresight shift

18. a - radius of dish aperture

19. f(r) - illumination of circularly symmetric aperture

20. /g, /AW, AL, Ad, A*, 9 - variations in these quantities

21. ILIb efraction1 of elements, hubs, or windows having a specified

tolerance or design variation
22. g ay = (gl + gt)/2

23. c0 , cI, c 1
1, c2 , c 3 , c 4 , c5 , c 6 - functions of aperture illumination

defined in context

24. A - area of a part of the radome

-vii-



SYMBOLS (cont'd)

25. R - radius of raaome

26. 0, t - defined in Figure 38

27. 9 angle at which grating lobe occurs
g

28. to - defined in eq(34)

Z9. P - defined in eq(37)1

30. A ,A - defined in eq(36)
e o

-,V 31. subscript m - metal

32. d - dielectric

33. E - Young's modulus

34. S' a, a- 6 - quantities defined in 13J

In
It

-viii-



PART I1

SYMBOLS

1. A - area
2. C - constant

3. D - constant
4. d - element depth

5. E - modulus of elasticity
6. F - total force
7. f - unit force
8. H - constant

9. I - moment of inertia
10. k - surface area coefficient
11. K - Tsi en-Von Karman coefficient
12. L - element length

13. M - moment or number of panels
14. N - stress resultant or number of elements
15. P 0 - pressure at wind stagnation point
16. q - distributed transverse load
17. Q - equivalent shell weight density
18. R - radius of radome
19. S - effective spacing of elements
20. t - thickness
21. u - circumferential displacement
22. V - velocity of wind
23. v - meridional displacement
24. W - weight of elements
25. w - element width

6. x - coordinate
27. y - coordinate
Z8. z - coordinate

29. a - meridional angle from base
30. A - exponent coefficient
31. Q - circumferential shell coordinate
32 X - Lagrangian Multiplier
33. ti - Poisson's ratio
34. P - weight density
35. '- normal stress
36. • - meridional shell coordinate
37. w - normal displacement

38. subscript 1 - boundary condition one
39. 2 2 - boundary condition two
40. R - radome
41. r - reinforcement
42. s - shell

-ix-



SYMBOLS (cont'd)

43. subscript e - external
44. " i - internal

45. " cr - critical
46. yp - yield point
47. b - base of radome
48. - direction of meridian coordinate
49. 0 - direction of circumferential coordinate
50. " - direction of $ in plane normal to 0
51. n - direction normal to surface of radome

IiI1



DESIGN OF METAL SPACE FRAME RADOMES

PART i - ELECTRICAL DESIGN

INTRODUCTION 4

"Electrical Design of Metal Space Frame Radomes. [I] by Alan F. Kay,

was prepared and submitted for publication on August 20, 1963. A revised ver-

sion dated March 23, 1964 has been accepted for publication in the Transactions

of the IEEE, Professional Technical Group on Antennas and Propagation. This

paper contains the fundamental theory on which most of this present report is

based. The present report gives design graphs, formulas, and procedures for

specific radomes in the . 1 to 10 gc/s. band, as well as considerably more design

data than incladed in [1]. This data pertains to the three most critical electri-

cal properties of the radome: loss, boresight error, and sidelobe increase.

A section on the relative merits of metal and dielectric ribs is included.

LOSS DUE TO SPACE FRAME ELEMENTS

Equation(Z2) of [1] is the fundamental approximate formula for the loss

due to the space frame itself. In the Appendix, p. 120, a brief derivation is given

of this expression:

(I) G = I + gj 2

where G is the relative power loss as measured at (or near) the peak of the

antenna beam due to the presence of the radome space frame, R is the block-

ing area ratio of the space frame and g is the induced field ratio of the space

1



frame elements. Equation(l) neglects the loss due to hubs and dielectric skin.

We give here simple formulas and graphs by which G may be computed in

most cases.

Consider the space frame to be comprised of triangles of elements of

average length L from hub center to hub center and of width W. Consider

any one triangle as extending to the midline of each of the three elements corn-

prising it. If the triangles were exactly equilateral then P would equal

3.4 WZ'-3-- = 346--.
L L

If the triangles were right isosceles then = 3.56 L- 12 generally in-

creases the further from equilateral the triangles depart or the greater the

standard deviation of the element lengths from the average value L. For a

well designed radome geometry the element lengths should all be close to the

average L and the triangles all reasonably close to equilateral. A reasonable

approximate value of P has been found to be

()3 W

This value is also approximately corrected for a quadrilateral geometry.

The value of g depends on the element crow-section, the average inci-

dence angle 0 of the radiation from the dish to the curved radome, and the

polarization. When the projection of the elements into the aperture plane are

all parallel to E, the appropriate value of g is ge . When the projection

2



of the elements into the aperture plane are all transverse to E, the appropriate

value of g is gt" Li the case of a triangular geometry with L < < D,

where D is the dish diameter, the appropriate value of g is

(3) g

Values of gav for various rectangular cross sections, W x d, and

frequencies are shown in Figures l to 3 for 0 = 0. These values were ob-

tained by the computer program -described in [1]. At sufficiently high fre-

quencies f, t- (gay) approaches -1 and ik,(ga) approaches zero. How-
avwav

ever, the manner of approach is such that each of the curves d/W constant

spirals an infinite number of times before reaching the terminal point (-l, 0).

If the graphs were extended into the regime where this spiraling takes place,

they would be difficult to read and interpolation either in f or d/W would

be virtually impossible. It is also in this regime where shaping of the element-i]

can effectively reduce loss and consideration of purely rectangular elements be-

comes less significant. Figures 4 to 6 are transparent overlays for three values

of P' which give G directly in db, according to equation(l) if any of these are

placed over one of the Figures 1-3 with the axes coincident. In any case where

values of f0, W, and d imply that L < X, then multiple scattering becomes

importantli) and equation(l) is inaccurate. These cases occur at low f when the

apparent values of G obtained from (1) seem to increase above unity (negative db)

3
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4'

with decreasing f. Figures 7-10 show the loss of a particular radome versus

frequency for various average incidence angles 0. 0 = 0 corresponds to a

flat radome. Typically 0 is 10 to Z0° for spherical radomes. Each figure

is for different element widths and depths as indicated. A similar plot was

shown in Figure 10 of [I] for still a different element including comparison

with measured values. Figure 11 is a photograph oi measurements of inser-

tion loss of a partial radome. Figure 12 shows measured and theoretical loss

of two such radomes, which were designed for optimum electrical and struc-

tural performance as described in Part II, p. 100.

An empirical formula for G has been obtained by observation of the

general behavior in Figures 1 to 3 and other similar data, as follows:

I { cW(d-W)

(4) 10log 1 0G= 39 .5W+3.5d+.147-•+-•+ w

where c is a parameter depending only on the curvature of the radome over

the projected area of the antenna, or approximately on the average incidence

angle 0. If 0 IZ°. c 4.46. If 0 250, c 11.8. Equation(4) is reasonably

valid provided

W < 2k, W < d < IOW, 110 logl 0OG < 3 db.

This validity is shown in Figures 13-29 where equatirn(4) Is cmpared

10
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a

with equation(l). From eq(4) we observe that depth d appearing in the second

term, is about one-tenth the importance in producing loss ofthewidth w appear- 41

ing in the first term. The third term expresses the frequency dependence and

shows that the loss of a given radome tends to increase with increasing X at a

rate proportional to d/w. The last term expresses the effect of curvature of

the radome. The latter effect becomes negligible as the element becomes square

(d -> w) or at sufficiently low frequencies or low average incidence angles. In

any case the first term usually dominates this expression. InMgures 13-29,

the approximation (4) to the more exact formula (1) is probably more accurate

for the cases *here the two disagree considerably, since this disagreement

occurs when mutual coupling is important and the loss indicated by (1) is too

small.

LOSS DUE TO HUBS

Let D be the hub diameter and L the average element length from

hub center to hub center. The analogous formula to (1) including the effect of

hubs is

(5 L-D j2
(•)~~ ~ O '--)gav -Pl I

where A is the blocking area ratio of the hubs, assuming optical blocking

of the hubs. In a triangular or quadrilateral geometry 4 is approximately

(6) •1 W

17
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Hence (5) can be written as

(7) G=jl+ 3 5Wg- 9(-)z2 D<<L.L+D L

With reasonable structural design the effect of the hubs is usually a small

correction to the effect of the elements.

LOSS DUE TO DIELECTRIC SKINS

In a space frame radome, at least up to 10gc, the skins will be thin

compared to a wavelength and the loss will be entirely due to reflection for

practical purposes if low loss dielectric windows are used. The reflection

loss in db is

(I-E) sin ( )

(8) 10 log, 0 (l + 4c

where 8 is the skin thickness and E is the dielectric constant. Equation(8)

applies to normal incidence but is a good approximation for spherical radomes.

For thin radomes a sufficient approximation is

(9) 10 logl 0 (l + (C-l )z .

For radomes below Zgc the loss expressed by (9) is usually entirely

negligible. Above Zgc it rises rapidly. Sufficiently thin skinned radomes can
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only be realized above 10gc with considerable care in structural design.

BORESIGHT ERROR

Equation (26) of [I] is a fundamental approximate formula for boresight

error due to a space frame radome or, if properly interpreted, for any source

of aperture phase errors. This equation is as follows:

fa Zin
rf(rf rqcsrd

(10) 0, 2,•:: Z2 at~
Z 0r 2 f(r)dr

Here 01 is the boresight shift in radians in the plane q= 0 where f(r)costL

is an approximation to a monopulse difference pattern, (r, /L) are polar co-

ordinates in the aperture of radius a, and X is the wavelength. V,(r, /) is

the phase error at (r,IL). In this section we shall use this equation to determine

the boresight error due to many commonly occurring factors. Equation (10) and

the results of this section apply to monopulse systems. However, they are re;-

sonably accurate for conical scan or peak shift determinations if f(r) is cort-

sidered as the aperture illumination of a sum or even symmetry mode.

The types of errors considered are indicated schematically in Figures

30-36 as variations from the small boresight shift of a basic radome or from

no boresight shift at all.

The following notation is used:

X = wavelength

a = radius of antenna aperture = D/Z
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f(r), 0 < r < a = illumination of aperture (circularly symmetric)

W, L, d = nominal element width, average length, and depth respectively

AW, A-L, Ad = tolerance or design variation in W, L, or d, respectively,

for elements specified

/= blocking area ratio= 3. 5 W/L for triangular or quadrilateral division

of sphere

.•g) ± imaginary part of the induced field ratio, IFR. If polarization

is random or averages to 450 over particular elements causing boresight shift,

then
gj +gt

g = Z a

is the algebraic average of the longitudinal and transverse polarization tFR's.

If not, applicable gi or gt or weighted average must be used.

v~g) = tolerance or design variation in 4(g) of elements specified.

A = total area of radome where tolerance or design variation may occur.

ýRI fraction of elements, hubs, or windows having a specified

n .number
tolerance or design variationi 0 < < 1.

E ,' =nominal dielectric constant and skin thickness of windows

S, A9 =variation in e or

All boresight errors are in radians.

Note that

•(W.{g)L) , W),,(g)/\L + WLQg) + Lg)/\W.
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We now consider six different sources of boresight error:

I) A smahll•number n, n = 1, 2, .. of extra elements are located-in one local

region of the radome, small compared to the antenia~diameter D. The worst

error occurs when the extra elements are at the peak 6fthe, difference pattern,

when t•t beami shifts awa from this-location by anafigle

where g is the IFR value of the extra elemidits, and c0 der3ns oily oi the0i
illumination taper

3
max (fwr) .27,fa' 10db taper

• (12) = ZO~rfada 3 (see Fig. 30)
2n2 orf(r)dr P7a , ZOdb taper

0

Z) Certain elements of the space frame whi:h are randomly distributed in the

space frame and constitute a fraction F of the total number of elements, have

a different width WI W0* AW. and/or depth dI = do + Ad from the remraining

elements which are assumed to be such that if AW Ad 0 then there is no

boresight error. RMS boresight shift is then

triangulated
rms X radome
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where

10 ldb taper

"13. 5ir0 r! 2 (r)dr [.42/aZ b
(14) 2 - ,0/a, 20db taper

21T r *rf(rdr

If the radome is not triangulated by the space frame, but has -some, other arrange- V
merit of elements, (12),applies with, ý. repl.*ced by,

(P15) 35 (see Fig.31 ).

31Giventolerances W and Ad in dimensions of all elements

a) Largest possible boresight error occurs when +6W, +6d occurs

on one side of dish- -JAW, -6d occurs on other (Figure 32a). Beam shifts

towards the least metal area by an amount

(16) L 4

LA

where

a J 1.19/a, 1Odb taper
7 Srf(r)dr

(17) c2 = = 1 1.30/a, 20db taper

0

b) Variation of 6W, Ad is limited to an area A whose maximum

diameter is small compared to D. Boresight shift is
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X AN\(W9gg)) C
3

0<~ fur)- 4a IIOA6
(C1) ---- -'30/a --~bae -(seOeig, 32b.).

-- ( 6ta Zdb taipe rJ

d), Variations6 in dimensions of elements of a space frame are random with

A an Adbein-g rm-s values of the variations Inn W aindi d. then rms value

6J5f boresight-error is

(20 0. =ac (see Fig. 32d)
rms g

4) Rms boresight error for a random space frame geometry (most probable

boresight error if a number of elements are randomly distributed over sphere)

(2 1a) 0 = XW(g)LArn C
rms1

SO r~ dr .13/a, lOdb taper
C1 a 2  3

21 ira r f(r)dr .15/a ,20db taper
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2
where i = ia JD /WL is the number of elements seen by the antenna. For a

triangular or quadrilateral ogeometry

3 5W

and then

(21b) 0m W.•(g)C1. (see Fig. 33).-
kms

Mutual coupling between elements is neglected in (21a)"

5) A small number n, n =1, 2,... of dielectric windows (each of average -4

area: 4L 2) with variations A8 and AS* in dielectric conStant and wall

thickness are all located in an area of the radome whose maximum diarneter

is small compared to a. The maximum boresight error occurs when these

windows are at a difference pattern peak, and is given by

.4 ax ir 68/a , 1db taperO<r.a

(23) c4 = a 3 (see Fig.34).
I S r f(r)dr . 9 4 /a3, 20db taper

0
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6) A certain fraction ;L of windows which are randomly distributed over the

aperture have a different dielectric constant E =,E + AE and/or thickness

S 0+ A_ from the remaining elements, which are assumed to be such that

AE = 0, then there is no boresight error.

(24) 0 =L-c)c&+---- -]
rms 5L

~ý4 j
3t

ab4 2
rf (r)dr .89/a 2 , 10db taper

= f a 0.6a (see Fig.35)
!Vc5 ai. 06/a 2, 20db taperSr fi(r)dr

0 i

Given tolerances A- and AC in all windows t

a) Largest possible boresight error occurs when +&E and + occurs

%on one side of dish* -•, occurs on the other side. Beam shifts towards

Ithe •mOst dielectric area by an amount

(25) A - E - I )A+ 6

a
(rf(r)dr 2. 14/a, 1Odb taper

4 0
(26) a 2. 34/a, Z0db taper (see Fig.3 6 a)

or f(r)dr

b) Variation is random and windows are distributed uniformly over
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surface of radome with /A being rms values of the variation in c

and S. Then rms value of boresight error is

(27) 1 I - + Lc6 (see Pig 36N).

Figure 37 is a plot of N g4 ) for various d/% and W/k. From

this graph the preceding formulas may be evaluated explicitly. As an example,

we consider two cases - the first a gross geometry with loose tolerances, the

second a finer geometry with tighter tolerances.

_.... . . . Case 1 C ase 2

L 30' 10'
W lI" 5"

d 10" 311

AW . " .005"1

Ad lit .025"1

n 4 4
1 ' 1'

a 60' 60'

taper 10db 10db

IL .2 .2

A .05(iTa) .05(.ra )

C 4 4

.5.1

C. 100" .050"

S.025" . 005"
gav Z 14.44 18.84
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The resulting values of boresight shift computed from eqs( 14) to (27)

are shown directly on the figures. 30 thru 36 as cases I and 2.

EXPEl. rED SIDELOBE LEVELS DUE TO THE SPACE FRAME

As pointed out in pp. 14-15 of [1] the expected close-in sidelobe level

due to the presence of the radome increases even though the expected average

field values are unchanged by the radome. A rough formula for the expelted

increase in close-in relative sidelobe level relative to the peak of the pattern

is

27W 3jgav

(28) avaZL

which is derived in the Appendix.

Values of average sidelobe level increases computed by (28) are usually

small compared to peak sidelobe. increases which may even be an order of mag-

nitude larger. However (28) is useful in showing how the various parameters

effect expected sidelobe increase.

Another sidelobe phenomenon often occurs with space frame radomes,

namely at some angle(d) far from the main lobe, sidelobe(s) may arise as high

or higher than the close-in sidelobes. There are called the diffraction side-

lobes, in anabgy with diffraction grating effect. Since to the extent that the

elements are pazallel, equi-spaced and coplanar, i.e. a diffraction grating,

these lobes will be higher and more noticeable. At angles out to 0 < 0 < X/2L,
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the expected field values with the radome are proportional to those without,

the proportionality constant being independent of 0. Except for the small

effect considered above (or, in detail, in the Appendix), the relative sidelobe

level with and without the radome in the range 0 < 0 < X/2L is the same. If

the scattering patterns of the individual elements were isotropic outside of

this range and if the scattered fields were randomly, or even better, uniformly,

distributed in phase, the energy scattered by the space frame would be scattered

essentially isotropically, i.e. uniformly distributed in all space and the far-

out sidelobe levels would be well below the isotropic level of the total radiation

and hence usually not observable except on an average basis, by sensitive radio-

metric measurements. However, this is not generally the case and diffraction

lobes do arise.
S~*

The IBM 7090 program will predict these lobes accurately. However,

in order to obtain an approximate formula for rapid calculation of their levels

and to see how and to what extent they will occur, we derive here an approximate

formula for them.

Suppose L is the average length of an element, and suppose the direction

of propagation is along the z-axis. Suppose an element is at a distance t from

the axis. The phase A as observed in direction 0 of the field incident on the

element is

(29) Ak(-OB - AG) =kR I_ - (-) - kR cos(0 sin()
R

*described in [1j
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where k = 2,r/X.

C
o •" B

FIGURE 38

Referenced to the axial point t = 0, this becomes

(30) A = :kR( -I()Z - +cos9 - cos(- sin

If t < < R, this is approximately

2 k
(31) •- QkR(-s - ---- kt sin 0 -

ZRR

Now if the radome were flat, the last term in (31) would be zero and, it turns
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out, (31) would be exact

(32) A - -kt sin 0 (R oo).

Hence the last term in (31) is the first order correction term for phase

variation of the fields scattered by the elements due to the curvature of

the radome.

If L is the average element length, the average element center to

center spacing is about L/Z for a triangulated space frame (see Figure 39).

L• Figure indicates distance between

phase centers averages about L/Z.

L;- L FIGURE 39

To a first approximation, in the case of a flat radome, from eq(32) a

diffraction grating lobe would occur at an angle 0 where
g

kL
(33) - Lsin 0 = w,.2 g

The curvature correction term in (31) implies that only a certain number

of elements near the axis contribute coherently to the grating lobe, those ele-

ments, in fact for which t is less than t0 where

kt 0
2

(34)5
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Other elements for which t exceeds the limit set by (34) are essentially

incoherent or have random phase. From another point of view, elements with

t < t are in the first Fresnel zone for in-phase contribution to the scattered.

field in direction 0 = 0
g

The gain G (G ) of the scattered field in direction 0 0 9g, equals 1/r

times the gain of a uniformly illmnnated disc of radius t0 multiplied by the

fraction / I gavI of the relative effective blocking area of the space frame,

multiplied by 2, and finally multiplied by the periodicity far'tor P

2

(35) G13(9 v 1j ~Pir7 (i-f (ifto< < R).

The factor 2 is an approximation to the fact that the elements near the center

of the aperture are more heavily illuminated than an average element in the

aperture because of the antenna illumination taper. The factor 1/wr is due to

the phase error in the first Fresnel zone (which has a max of ir, by definition),

The validity of the use of this factor is proved in ref [5j, p. 15, case N = 1.

The periodicity factor P is a measure of the parallelness and periodicity of

the elements. P may be defined as follows: Consider the Fresnel zones in

the projected dish aperture as observed from the angle 0 . These are parallelg

strips of width equal to the average periodicity d the space frame (approx L/2).

Let the total element area in the even and odd zones, respectively, be

(36) A eN LW and A 0/N LW
e-- e o- 0
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where N and N are the numbers of elements in the even and odd zones
e o

respectively. Then

(37) P e 0~

If all of the elements are parallel (diffraction grating) then P = 1 (Figure 40).

If the elements are in a regular rectangular array then P 1/2 (Figure 41).

If the elements are in a regular triangular array then P = 1/3 (Figure 42).

For a regular hexagonal array in the orientation shown in Figure 43

P, .6.

The preceding considerations must be modified if the elements in either

the even or odd Fresnel zones have a strongly preferred direction which is

not at 450 to the polarization, and if I g2  is substantially larger than I gt.

For example, in the case of the hexagonal arrays or rectangular arrays,

if I g£ > > Ig, & and the polarization is parallel to the Fresnel zone boundaries,

then P might be close to unity.

Assuming a 50% aperture efficiency with the radome in place, the gain

of thi antenna is

(38) G o -

Combining (34), (35) and (38) gives Gs (0 ) relative to the maximum gain ofsg

the antenna.
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S16XR PP jgv2 XR < : D2

(3 9 ) 
2s gR D

Go0 PP Igav I, R:=c

We may make a table of maximum grating sidelobe level as observed in the

IBM7090 calculations and those predicted by (39) for various cases where

the quantity

(40) 16XR =.045= 13.5db
iTD

2

Element IBM7090 Calc. Equaticn (39)
Geometry No. Max Diff Lobe 10gl Max

Table 1 (db) P Diff.
of [1] J Lobgadb

) Regular Snub- 52 25.4 .33 7.7 26.0
dodecahedron

2) Regular Snub- 6 22.6 . 33 5.7 24.0
dodecahedron

3) Regular Snub- 53 22.2 .33 5.4 23.7
dodecahedron I

4) Random Icosahedral 52 34.2 .0058 8.3 34.2

In the regular geometry rase, the value of P .33 was chosen because

this geometry i3 close to a regular triangular case. The agreement in the above

table shows that this value of P is reasonable. The dependence on element shape

checks out fairly well. In the random case the value of P was chosen to make
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the two calculations of diffraction lobe level agree. This result shows that the

random geometry elements are about five times more uniformly distril-uted

in angle than the elements of the regular geometry

COMPARISON OF DIELECTRIC AND METAL STIFFENING RIBS

In the design of a space frame radome, there is always a compromise

between structural strength and transmission loss. The question arises as to

whether one does better in this tradeoff using a dielectric or metal space frame.

In each case we would normally use the highest strength materials available -

steel for the metallic space frame and Fiberglas laminate for the dielectric

frame. If the transverse dimensions of the elements are comparable to a wave-

length, data exists z] which indicates that the scattering cross section or IFR

of metallic and dielectric elements are roughly the same. Since the metal

enjoys a considerable strength advantage, there seems little question that in

this case the metal is superior. Let us consider the case where the maximum

diameter is small compared to a wavelength. In this case, there is no advantage

in shaping the metal element, so that we may as well consider it rectangular

of width W and depth d . There is even less dependence on shape for scatteringmT m°

,y the dielectric element so that we may consider it also a rectangle of width Wd

and depth dd. There are two rough criteria for equivalent structural strength

of the metal and dielectric elements: equal exial stiffness and equal radial bend-

ing stiffness, either of which may apparently govern under different circumstances.

These imply respectively.
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(41) E W d =EdWdddm mm dm d

(42) E W d MEdWdddm mm dd

where E /Fd is the ratio of metal to dielectric Young's modulus, which in

our case is about 15. Let us use (41). We have then equivalent elements satis-

fying

(43) Wddd = 15Wmdm = Ad

where Ad is the section area of the dielectric. If (42) were used instead,

very little difference would be found in the general results which follow.

We may use the results of Mei and Van Bladel [3] to compare the two

structurally equivalent elements electrically. At transverse polarization, from

Figures 5 and 6 and eq(7) of [3], we observe that tor both metal and dielectric

the narrow dimension should be transverse to the direction of propagation for best

results, i. e. W < d, so that Figure 6 is appropriate. It can be observed that

typically a 2 is about twice as large for metal as for dielectric with the Fiberglas

dielectric .onstant (, 4) and that the term 25 in eq(7) is about equal to or smaller

2/ 2
than the term a 2/0 for metal. Accordingly the scattering cross section ratio

o- / ;d for elements with the same dimensions is about 4 or 5. But bot). ."
n rn
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and V7 are proportioinal to the square of the section area in wavelengths,
d

and hence for structurally equivalent elements satisfying (43) the ratio is

m 4or 5
(44) -- ., 5i •d -15Z

Thus the metal i,7 .perior electrically by about 50 to 1.

In the case of parallel polarization the situation is different. The

asymptotic formula (10) of [3] can not be used since it becomes inaccurate

in the range of interest (indeed, blows up when the perimeter of the metal

rectangle is X/Zir). However, from [4] eqs(15) and (16), we may relate the

IFR at longitudinal polarization, g1 , to 0r as

2 Zir
(45) kIg W k

inm

From eq(1l) of L3J, with a dielectric constant of E in this case,

(C -1) k 3Ad2

(46) = 4
d 4

and from (43), (45) and (46) a- < d if

(l2k325 2d 2

2 (C -I) 2k 3Z25W 2d2
(47) k~g W m m

66-4

66-



or

15(c - 1)kd

(48) 2g, I < m

In Figure 44 g is plotted for various W i, d and frequencies.

Where equality holds in (48) Ig t is much smaller than Ige j and hence

15(,E - I)kd
(49) lgavI _• V -'g 4

We have plotted where equality in (49) holds in Figure 44 for the case e = 4.
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PART II - STRUCTURAL DESIGN AND OPTIMUM ELECTRICAL-
STRUCTURAL DESIGN

SUMMARY

The object of this project was thl :onstruction of a systematic pro-

cedure, amenable to simple calculation, for the optimization of large space

frame radome design. Consideration of three design aspects (electrical,

structural, and mechanical) formed the basis of the optimization procedure.

Specific attention was directed to radomes of 140-160 feet in diameter used

with RF systems radiating within a 200-500 mc band.

The project study involved three phases: (1) the application of an

electrical performance evaluation technique to predict radome transmission

loss, (2) a survey of the radome literature fr structural analysis and mechani-

cal design concepts, and (3) the consolidation of pertinent design considerations

into a design procedure for an optimum radome within practical limitations.

The evaluation of the electrical performance of a space frame radome

involved the prediction of the transmission loss due to scattering effects caused

by induced currents on the elements of the blocking structure. The theory re-

lates the gain of the radome to the cross sectional shape and length of the space

frame elements. A specification of the maximum allowable reduction in gain

fixes a holonomic relationship between the width, depth and length of the elements.

This relationship was defined as the electrical constraint on the radome element

design.

The accumulation and survey of the pertinent literature (see Bibliography)

was a prerequisite to the formulation of a suitable structural constraint on the
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element design. In the literature is provided a complete structural design

guide[ for the sizing of the radome elements which lacks the inclusion of

any electrical constraint. Therefore, it is not possible to quantitatively dis-

criminate the degree of compromise inherent in a particular design between

electrical perforn.ance and structural integrity. This is not a satisiactory

design condition if optimization is the objective. It was concluded that the

simultaneous imposition of an electrical and structural constraint on the

analysis of the elements would constitute the design approach.

In addition to the literature survey, consultation with several radome

developers and manufacturers was conducted. The consultations included

personnel of Lincoln Laboratory, Bell Telephone Laboratory, Goodyear Air-

craft, North American Aviation, and M. I. T.

Other efforts in space frame radome development are being directed

toward hardening against nucleai blast induced dynamic loads. This concept

is not considered in the subject study which directs attention to static load

conditions consistent wvith norrAal environments. The significance of the har-

dened radome development to this study exists in the fact that substantiation of

the general shell analogy concept of analysis has continuously precipitated. If

advances in fundamental design procedures exist, thej are apparently numerical

in nature. The STRESS(MIT) and STP.P3 (LL) routines are examples of digital

computer programs for analyzing space frame structures of high order. The

matrix theory of structural analysis provides a powerful computational tool but

is limited by computer capacity and as yet programs have not been compo3ed
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which display general design capability. Since the project specifications

require a design procedure propitious to hand or simple machine calculation,

the equivalent shell analysis was adopted for the optimization procedure rather

than alternatively pu-suing advanced computer program development.

The formulation of a structural constraint consisted of comparing the

criteria of strength and stability of the space frame which assures the integri-

ty of the structure. The criterion which imposes the most severe design condi-

tions was selected as the structural constraint.

The concept of optimum radorn-e design requires the definition of a

criterion by which comparison of selected designs can oe made. There are

many criteria relative to .which good design principles can be directed. Two

such examples are: (1) the minimization of transmission loss subject to a

structural constraint, and (2) reduction of structural weight in conjunction

with an electrical and structural constraint. Examples of these two approaches

are developed later in this report. The problem of producing the best radome

design within practical limitations cannot be solved by a single direct analytic

approach. It is first necessary to select the element size subject to an optimi-

zation criterion and second to generate sound mechanical design. This study

is predominantly concerned with the optimum sizing of elements and includes

some recommendations and goals for the ensuing mechanical design effort.

ELECTRICAL CONSTRAINT ON THE ELEMENT

For the purpose of optimum design of a radome over the 200-500 mc

band, we may write eq(4) of Part I as
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.147dX)10logl 0 G= L 39.5W+3.5d+ " db

if we neglect the curvature fe,'m which is usually small at lower frequencies.

This is tantamount to observing that at the low frequency end, the curves of

Figures 7 to 10 are almost independent of 0. With this approximatior

it is clear that the loss is greatest at the lowest frequency in the band. Setting

). = 61" (194 mc) and 10 logl 0 G = . 5 we may write an electrical constraint, such

that for any radome satisfying

L> 79W + 7d + 18d
- W

with all dimensions in inches, the loss will be less than . 5db.

STRUCTURAL ANALYSIS OF SPACE FRAME

A. External Loads

It is recognized that the most significant load modalities on a spherical

radome are those associated with kinetic energy of the incident wind anid the

structural weight. Ice and snow loads are of minor magnitude and experience

indicates that snow and ice build-up seldom occurs on large radomes.

The analytic representation of the wind pressure distribution adopted

for the structural analysis wzs that based on the potential flow theory. A poly-

nomial representation of the pressure distribution [9] ascertained from wind

tunnel data is more realistic than the distribution uf the potential flow theory,
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but, since little deviation between the two formulations exists on the windward

side of the radome and significant difference exists in the case of application to

the shell equations the potential flow representation was accepted. The fact

that buckling stability is critical only on the compressive or windward side of

the radome where the two representations agree (see Figure 1) helps justify

the choice. Figure 1 illustrates the variation in magnitude of the two formula-

tions for typical wind tunnel data. [7J

B. Structural Analysis

The equations which establish t.-e conditions for stability and strength

of the radome were developed by applying classical theory of elasticity to a

spherical isotropic shell of structural equivalence to the radome space frame.

This technique is well defined in the literature [6] and was closely followed in

the development of a structural design constraint.

The conversion of the radome t.: an equivalent shell requires two inde-

pendent equivalences, elastic and stress. The elastic equivalence is stated

by equating the extensional and flexural stiffness of the radome to that of the

shell. This is represented as:

(E) ERIR = ESIS

(2) FRAR ; ESAS

The stress equivalence is required due to the inherent difference in

elastic behavior of a space frame compared to a shell. The stress equivalence
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relationship equates the cross sectional area of an element to a comparitive

cross sectional area of shell. If a large number of elements make up the

radome structure the equivalence condition is satisfied when the volume of

the shell is one-half the volume of the space frame, f7J or for elements of

rectangular cross section.

N

(3) 41rRtt -wd L..

Then, since the element resists tLe. same stress as some equivalent section

of shell

(4) wd = StS.

The equations expressing the equivalent shell thickness and modulus of

elasticity are

(5) ts =I- d

E~w

(6) Es R

In order to apply these equations the effective spacing must be derived
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in terms of the radome parameters. This was done by letting M equal the

number of panels making up the surface of the radome and N equal to the total

number of elements. If the space frame is considered to be a triangulated struc-

ture typical of radomes with random or regular geometries then 3M = ZN and

the area of an individual panel equals

S6wR 2k

(7) A kp N

where k is a constant accounting for the truncation of the sphere. The value

of k is expressed as the ratio of areas of a truncated to complete sphere and

is:

1-scos
(8) k=

where f0 is the meridional angle to the radome base. The average panel

area was also expressed in terms of the average element length and is

(9) A < 3L
p-.

depending on the radome geometry. Since the larger A is the more conser-

vative the design must be. Equation(9) was taken as an equality. Equating

equations (7) and (9) and solving for the total length of elements gives

------ ----------------------------------------- -- -- -- -- -----
This is exact only for a non-truncated radome. For small truncated ra-

domes it is an approximation.
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2
(10) NL= .Z4iR k

4-3L

The effective spacing, S, was expressed by combining the equivalent

stress equations (3) and (4) such that

2(1)wd _8irR2

(1 1) S = 8 R and substituting.•tS N

? YL.

for the total length of elements gives

)S 8rR %F3 L
(N-1)L 3(1-cos f0)

14

The elastic equivalence relations were then written as

• (13) tS= 't d

( 3 ER(I-cos ý)w

S(114) ES Z %r3- L

The general buckling stability of the radome was evaluated by applying

the Tsien-VonKarman equation[g] to the equivalent spherical shell. Substitu-

tion of the equivalence relations into the buckling equation defines a critical
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buckling pressure in terms of the element dimensions which is

3KE tL(I-cos #0 )wd,
R(15) cr R2 -

The axial stress developed in the space frame elements was evaluated

by applying the general membrane theory of shells. The partial differential

equations of equilibrium for tIle equivalent shell, subjected to a wind pressure

distribution are

(16) R4 (sin* N#) + R-,z(N• 0 - RN.cos = 0

(17) R (sin #N N,) +R:-zN ) +RN 0 Co's # =0

(18) N +N =-PRsin coso

where the angles * and 0 are defined in Figure 2. These equations have

the general solutions 1A]

co ____ 1 C CI Z1 4}

+ 2 + 2 s#+P0 R(cos 2 1-os 4 *
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sinG [ l-C2 C1+c 131
(20) N# s= sn CI - + cos 2 + PoR(cos I- ios-3

(21) No --[•N+P 0 R sin #cos i.

In order to obtain unique solutions for the stress resultants (N, N9 , N, 9 )

equations (19) and (20) were made to iatisfy two boundary conditions and the in-

tegration constants CI and C were determined.

The first boundary condition was that the external morlm nt about an axis

in the plane of the radome base and normal to the wind vector must be equal to

the moment due to the internal reaction forces of the shell about the same axis.

Since the axis is in the plane of the base the only stress resultant contributing

to the reaction moment is N,.

The external moment is caused by the x component of the normal wind

pressure (see Figure 2) and is equal to

(22) Me = P 0 R3 cos #0 sin3 os 29 df dO

0 0O

The seaction moment due to the meridian stress resultant at the base

(N #) equals

(23) M= R 2 sin3  cos 0 dO

0

lb
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where N# indicates the stress resultant evaluated at the radome base.

Integrating and equating the two expressions gives the following equation

which sat'.sfivs the Eirst boundary condition

N
*b I

(4) PRcossin
cOs , 4 -3 0 # - cos # #b 3 0)

The second boundary condition was that the total horizontal external

force be equal to the total horizontal reaction at the radome base. Two stress

resultants contribute to the horiz'ontal reaction, N# and N The total

horizontal external force equals

2,rb

(25) Fxe = RoRzsinZ# cosZO d# dO.

0 0

The total horizontal reaction at the base equais

Z7r 2W

(26) F i=R sin #b N#b0sin 0 d0 + R sin~bcos 0 bNbcos 0 dO

0 0

where the stress resultants N#, and N are evaluated at the radome base.

Integrating and equating' the two expressions gives the following equation

which satisfies the second boundary condition.

(27) N, C b+ s i n 3b = Rb(sinb + 2)1

CO cos + sin 0  0 cos
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The simultaneous solution of equations (24) and (27) provide the solu-

tion for the integration constants as a function of the meridian base angle *b"

One-half the sum and difference of the integration constants are plotted in

Figure 3.

A secondary axial stress is-developed in the equivalent shell due to the

weight of the structure. The equilibrium equations for a spherical shell sub-

ject to a uniform gravity load are

(28) Rif(shin N#) + R-(N R co 0 t~cos~

(29) 1 sin N.0 + Ro+ R 0 (N + RN cos = 0

(30) N+N 2Coa

131 * N 0  pt sinZcos .

The soluti6n of these equations for the stress resultants are given

as[41

(31) N -

(32) NO 0
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(33) NoQ-ats [+o, P- cos

The total axial stress resultants are equal to the combinatiz-n of

each component due to the external loads of wind pressure and structural

weight.

The axial stress that the space franie elements must sustain is

related to the stress resultants produced in the equivalent shell. The maxi-

mum element stress consists of the product of the effective spacing of the

elements and the maximum compressive stress resultant divided by the

cross sectional area of the element, or

(34) 
-rm ax (N--ax)L

3(l--os Ob)wd

The maximum compressive stress.resultant exists at the wind stag-

nation point where 0 = 0 and n =/2Z. The general stress resultant equations

simplify to

(35) N ýmax "(C1+ C2 RtS

(36) N 0 a = C+ C) P0R + /RtS
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(37) N 0

at the stagnation point and become the principle axial stress resultants.

The wind pressure distribution on the surface of the radome transmits

a transverse force to the individual elements. This force distribution on the

elements causes flexure stress to be developed in addition to the axial stress

expressed in equation(34). In analyzing the flexure stress, the transverse

force distribution was assumed triangular with a maximum unit force located

at mid-span. A distribution was assumed in order to eliminate contention

with the elasticity of the dielectric panels and the consideration of elastic

foundation theory.

The magnitude of the transverse force distribution was deiined auch

that the total maximum force resisted by the element equalled two-thirds of

the total external force applied to the entire panel. The distribution varies

from zero at the ends of the element to a maximum at mid-span and was ex-

pressed as

L4 7-3P0x, 0 < x < -

(38) q ) L L( qP 0 L - 4-3 P 0 (x - ) < x <L.

The maximum flexure stress developed from simple beam theory for

a condition element end fixity equalst
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6M 3
(3 9 ) max 43 P L

fmax wd2 16 0 Zwd wd

The design criterion adopted which governs the selection of element

dimensions when combination of column (axial compression) and beam (flexure)

loading occurs, was such that the sum of the ratios of actual to allowable axial

and flexure stress be equal to or less than unity. The allowable flexure

stress at the outer fiber of the element was chosen to be the material yield

stress and the allowable axial stress was defined as the critical Eulu buckling

stress. The design criterion was expressed as

(40) f max + max(40 +Y r < I

yp cr

which upon the substitution of the maximum flexure stress equation (39) and

Eulu's critical stress equation (40) becomes

4-3Po L 3  2'4-3(N max)L3

(41) 2 + 2 3.
16r pwd R2ER(I-cos #b)wd -

The development of equations (15), (39), and (41) completes the deri-

vation of the structural design constraints. The constraint equations were

developed within the framework of simple beam theory and the shell membrane

theory. It is shown in ref[3] that the ratio of membrane stress to bending

stress is small. Therefore, the assumption that the radome equivalent shell
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1. i

behaves like a membrane is valid, provided that the base edge of the radome

is free to expand. However the base of the radome is fixed by a restrainin-g

ring causing a discrepancy in the boundary conditions. This situation is recti-

fied by superimposing a distributed moment around the edge of the shell of such

a magnitude that the membrane displacements are made to vanish. The addi-

tion of a reaction moment to the base results in an increase of stress in the

neighborhood of the base and element reinforcement design is required to ac-

commodate this condition.

The calculation of the reaction moments at the radome base requires

consideration of the general theory of bending in shells. A formulation and

solution of this problem is available in ref [3], section 130, which gives two

particular equati ons

(4Z) Z sin ýbM ZRZ sinZb H

(b EStS #b Ests

4Z 3  zzzsin k b

(43) •b REstS Mb + Ests H

where 4 and are the displacement and rotation of the radome edge

and M O and H are the reaction moment and force at the radome edge.

(441 z4 = 3( 1 -tt )( )
ts
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In order to utilize these equations for the solution of the reactive moment

at the base the displacement at the base must be evaluated.

The computation for the displacement is greatly simplified if the external

loading is assumed symmetrical. Therefore a modified external load is imposed

on the radome to facilitate the calculation of the reaction moment. The loading

is assumed to be a combination of a uniform normal pressure equal in magnitude

to the wind stagnation pressure and a uniform structural weight.

The displacer-ent is shown in the ref L3] to be equal to

(45) R sinsts (N 0 - ILN.)b

where

PoR QR

(46) N - )4)~(+ 1Cos #b

[PoR 1 )

(47) N - . - + QR (cos 4) + I k "
0 Lz +C0-f

By substitution of equations(46) and (47) into equation (45) the displacement

becomes

R sin 4 b FPoR OR ]
(48) S# - - +cos ) +bj

E~t$



The boundary conditions of radome base consist of requiring the rotation

to equal zero and the displacement to be equal and opposite of Therefore

by setting equal to zero and substituting equation (48) into equation (42)
y0

the reaction at the radome base was evaluated directly and equals

(49) Rt [(0 Co-

HI11

The optimum elements which satisfy the structural constraint expressed

by equation(41) must be reinforced to accommodate the reaction moments dis-

tributed around the base. The degree of reinforcement waa determined by re-

quiring that the maximum stress in the modified elements be no greater than

the maximum stress in the optimum element.

The reinforcement design is completed by specifying the number of

elemaits to be modified. It was necessary, then, to investigate the nature of

the bending solutions in the neighborhood of the base. It has been shown[41 that

the bending moment equations can be expressed in the form

(50) =ý -E Q BALIIA+A 2)cosj6c. - (AI- A 2 )sin CL]

(51) M 0 I MS

where
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"S(52) 4 (1 R2
2.R

Is

The exponential term in the moment equation causes the rapid decay

of the moment at the radome base as the angle a (see Figure 2) increases, and

by evaluating the rate of decay the number of panel tiers requiring -reinforced

elements was determined.

This completes the description of the structural analysis which provides

the equations and techniques to evaluate, (1) a structural constraint for the

majority of elements distal to the radome base, (2) a procedure to calculate

the reinforcement required by the elements proximal to the radome base, and

(3) the member of elements wequiring reinforcement.

OPTIMUM DESIGN CRITERION

The concept of optimum design implies a methodilogical assignment of

system parameters such that the system performance is maximized relative

to a defined criterion. There are several possible criteria which could be ap-

plied to radome design. Two criteria were selected for consideration in this

study and are (1) minimization of the radome transmission loss subject to a

holonomic structural constraint, and (2) the reduction of the total element weight

subject to an electrical constraint which fixes a minimum transmission loss and

a structural constraint insuring radome stability and strength.

A description of the optimization procedures initially requires a defini-

tion of a single structural constraint based on the equations developed in the
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structural analysis. The structural constraint utilized was the most severe

design condition imposed on the element sizing by either the general or local

buckling equations expressed by equatirns (15) and (41). A comparison of the

two design equations was made by graphing the maximum allowable wind velocity

permitted by each equation (see Figures -;, 5, and 6). The equation which per-

mits the least wind velocity for a particular set structural and environmental

conditions becomes the constraint and is written in the form

(53) F(L, w, d) 0.

The equation for the transmission loss is also a function of the element dimen-

sions and is written as

(54) G-=G(L, w, d).

The procedure for obtaining the element dimensions which win result

in an extremum for the transmission loss (G) subject to the constraint (F) in-

volves the application of the method of Lagrangian Multipliers [" ]j and is out-

lined below.

The total differential of the transmission loss is written and set equal

to zero:

aG aG 8G
( 5!5) dO = D -dL+ -gw dw+ a-T-dd 0.

'8
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The total differential of the structural constraint is written

OF OF OF

(56) dF =-dL + -dw +-dd= O.
0 L a W S

The differentials of L, w, and d can not all be independent. Arbitrarily

specifying the differentials of L and w as ind*p$dent the remaining dif-

ferential (dd) is solved for from equation (56) by setting

F dL+ 3F d

(57) dd - WL dL+W
OF
ý d

provided aF/ad is.not equal to zero. By substituting equation (57) into

equation (55) the dependent differential is eliminated and the resulting equation

is

aG dL +G dw - X(LFdL +OF-dw)

where for brevity 8G/ad) /(aF/ad) is defined as X. Equation (58) can be

written by collecting like terms as

a G OF aG 8 F
(,59) -L'_- kg-j)dL + (g- _ ku-)dw = 0.

Since the differentials of L and w were defined as independent, the coeffi-

cients must'vanish in order to satisfy equation (59). In this manner a system
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of four independent equations in four unknowns (L, w, d, X) are obtained, the

simultaneous solution of which will yield the element dimensions that cause

the transmission loss to be an extremum. The transmission loss must be

evaluated for each unique set of element dimensions to determine if a mini-

mum exists. The system of equations to be solved is

(60)
aL 8L

(61) OG _XF=

&G aF( 6Z) a
Od ad

(63) F(L, w, d) = 0.

A direct extension of this procedure would consist of imposing an

additional constraint on the method of Lagrangian Multipliers. The additional

constraint would conceivably be placed on the maximum weight of the space

frame. In such a case five independent equations in five unknowns, the three

element dimensions and two Lagrangian Multipliers X and )X2P would be solved
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simultaneously. A complete description of the method of Lagrangian Multi-

pliers can be found in ref~l I] or most any text on advanced calculus.

An-alternative optimization procedure based on the reduction of the

structur•.l" weight subject to an electrical and structural constraint was de-

veloped and is essentially graphical in complexion. The method description

is first precluded by the formulation of the required equations. The structural

constraint will be the severest design condition imposed by either the general

or local buckling equations. The electrical constraint is established by substi-

tuting a value kbr the minimum allowable transmission loss into the gain equa-

tion, G = G(L, w, d). The electrical constraint equation is plotted in Figure 7

for constant lengths and a maximum transmission loss of 0. 5db. The remaining

equation to derive is the expression for the total element weight in terms of

element dimensions. This equation was written by taking the product of the

total volume and the weight density of the structural element3. The total vol-

ume is equal to the element cross sectional area times the collective length

of the elements. The weight equation was, then, expressed as:

N

(64) W = PwdL.

where the summation of element lengths has been shown to be equal to
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247rR k
(J 0) NL = .Rk

4-3L

Substituting equation (10) into equation (65) gives

2wd

(65) W13.857rR

A graphical examination of the three equations, electrical and structural

constraints and the structural weight, provides, perhaps a less direct approach

to the optimum selection of element dimensions. However, the necessary solu-

tion of a system of equations, which may be tedious and cumbersome, is avoided.

The objective of the graphical approach was to generate a set of curves

which display the behavior of the weight and constraint equations for a practical

range of element dimensions and arrive at a design decision by graphical exami-

nation. The curves generated for the example design were: (1) the maximum

wind velocity permitted by the local buckling equation, (2) the maximum wind

velocity permitted by the general buckling equation, (3) a comparison of local and

general buckling, (4) the electrical constraint equation for constant lengths,

(5) the weight of aluminum elernei-it; for a range of widths which satisfy both an

electrical and structural constraint, (6) the weight of aluminum elements for a

range of lengths which satisfy both an electrical and structural constraint, (7)

the exponential decay function for the bending moments due to the radome bound-

ary conditions.
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SAMPLE RADOME DESIGN

An example design of a 150 foot diameter space frame radome was

Sperformed to provide an illustration and detailed description of the optimi-

zation design procedures. The design calculations were based on the follow-

ing radome and environmental specifications:

1. Radome diameter - 150 feet.

Z. Structural description - triangulated space frame of regular (snub-dodeca-

hedral) or random (icosahedral) gc-ometry.

3. Truncation base diameter - 130 feet.

4. Structural material - 6061 T6 aluminum.

5. Maximum wind velocity - 150 mph sustained.

6. RF band - 2-00-500 inc.

7. Maximum transmission loss - 0.50db.

The general radome desi-gn equations developed in the preceding sections

are:

1. Transmission loss - gain equation

79w t- 7wd I 18d
2Lw

2. General buckling, Tsien-VonHarman equation
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zr

3KEl(l-cos b wd 2

P
cr 2 43"Ii R L

3. Local buckling criterion

'4-3Po L 23 2-3(P R-4j • s Rd)L 3
0 + 0 s< 1

-l6 
w 2  2 3 - <16 0" wdz ir E(l-cos b)Wd3 -

yP

4. Total weight of elements

W 13.85krR k wd-L-

These equations become specific design formula* upon substitution of

the appropriate parameters which are:

1. E R = 10 7 psi

2. K= 0.50

3. k 0.75

4. b I1200

5. R = 900 inches

6. c' = 40. 000 psi
yp

7. P 0.098 pcf

8. Q = 0.004 pcf

9. P0 =0. 3125 psi

10. G= .5db
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The design formulae are equal to

(66) Lw 79w + 7wd f 18d

wd2
(67) P = 4.64-Lcr L

3 -5 3(63) (1. 316+ 0.0832d)L x 10 wd

wd
(69) W 2 6 4 3 w-d (kips)

The sample design description includes the method of Lagrangian

Multipliers to minimize the transmission loss subject to one constraint and

a graphical method to reduce the total weight of elements subject to an elec-

trical and structural constraint.

In both illustrations it is necessary to eliminate one of the structural

design formulae by determining which dictates the most severe restriction on

the element dimensions. Figures 4 and 5 are plots of equations(67) and (68).

Figure 6 is a comparative plot of equations (67) and (68) and displays the fact

that for all element widths and lengths over one inch and 14 feet, rec.pctively,

the local buckling design restriction is most severe. Since a width of one inch
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or less is impractical for the size radome considered in the exarniple design,

the local buckling equation was selected as the structural constraint.

The method of minimizing the transmission loss subject to a single con-

straint was previously outlined where equations (53) and (54) take on the form:

(53) F=(1. 316 +0. 0832d)L 3lx 1-5-wdO3

2
(54) G =79w + ldw + 18d.
(54) ZLw

The system Qf equations to be solved for the element dimensions which

minimize the transmission loss are obtained by performing the appropriate

differentiation. The equations in terms of the four u.nknowns L, w, d, and X

are:

(55) 39. 5w2+ 3. 5dw t9d +3Xw[-1.316 + 0.0832d] Lx5x 10 5O

(56) 39. 5w 2- 9d +Xw 2d 3L =O

(5)3_ -5(57) ~3. 5w+ 9 -Xw[05.O0832L ZwdjLxiO =0

(58) L1. 316 +0. 0832d]JL3x 10 5- wd 3=0
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The method of Lagrangian Multipliers, which requires the simultaneous

solution of the above equations, is a direct analytic approach to the evaluation of

the element dimensions consistent with minimum transmissiu loss. The above

system of equationr was developed as an illustration of technique only, and the

solution was not attempted. H3wever, attention is directed to the degree of al-

gebraic complication involved in obtaining a complete solution which would be

increased by the addition of a second constraint. Therefore, emphasis was cen-

tered on a graphical approach which although less analytically direct, is more

favorable to hand calculation and visual interpretation.i
The graphical method was instrumented by the generation of a set of

curves, Figures 4 through 9. The total weight versus element width curve,

Figure 8, clearly defines a consequential design objective which parallels the

reduction of weight, which is the minimization of width. However, it is neces-

sary to establish a minimum width below which the advantage of suppressed

structural weight is totally masked by unmanageable mechanical design difficul-

ties. The total weight versus element length curve, Figure 9, provides a cue

to the selection of a minimum element width. The weight equation is not a single

valued function and displays a point of minimum element length which satisfies

the electrical and structural constraints. The element width which corresponds

to the minimum element length is of a practical magnitude and is defined as the

goal for the ensuing mechanical design. Therefore, the requirements for struc-

tural integrity during sustained 150 mph winds, minimum transmission loss of
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0. 50db, minimum element length, and minimum total weight of elements within

practical limitations are satisfied for a structural element of the following di-

mensions:

w = 1.10 inch

d 3.42 inches

L = 167 inches

The remaining design consideration concerns the reinforcement of the

standard element. The reinforcement calculation involved the evaluation of the

shell displacement and derivatives at the radome base and substitution into

the bending moment equations (48) and (49) which gives for the resultant mo-

ment at the base:

Po~d

(7 0 ) 
O 0 =

The bending moment applied to the elements at the base are then equal to the

resulting moment M#0 times the effective spacing (s).

(71) M/s = 15. 95dL.

The standard element was modified such that the maximum flexure

jtress of the reinforced elements was maintained equal to the maximum flexure

stress of the standard element. This requirement was formulated by equating
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the flexure stress of the two elements, one of standard cross section and the

other of modified cross section.

%F3 PoL N-3 PoL 6M S -
(72) - +

"I 16wd2  16(1+\yw)(1 A)2 (w+Aw)(d+1d) 2

I Equation (72) was solved explicitly for the incremental width -w and equals

73) Aw wd 2  + (1530 + 90d)wd 3

(d+Ad)2  %r.3 PL(d+/.1d)Z
I0

The most convenient manner to reinforce the element is to maintain a

fixed element depth and increase only the width. By fixing the element depth

for the entire space frame the requirement for special transition hubs or adap-

ters is avoided. The reinforcement equation is simplified by letting Ad

vanish and reduces to:

(74) Aw (2830 + 167d)1L .

The requirement in element width for the sample design equals 0. 459

inch and the reinforced element dimensions become

w = 1.559 inch

d 3.42 inch

L = 167.0 inches
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The number of elements requiring reinforcement was determined by

examining the rate at which the bending moment at the radome base damps

out at points away from the base. The percent reduction in the moment was

plotted as a function of meridian angle (a) receding from tl;e base as dictated

by the cx,?onential term of equation (50). Figure 10 shows that for the sample

design the moments are reduced by 98%o at an angular displacement of 100 from

the base. An equation for the number of reinforced elements was derived in

the following manner:

Let A be the total area of the radome composed of reinforced ele-r

ments. Then A is equal to:r

(75) Ar ZrR 2 a sin(ýb- )"

The number of reinforced panels (Mr) equals the area divided by the unit

panel area and equals

(76) M2 a sin(ý- a)
r q-3 L2

and the number of elements corresponding to M panels i.r

(77) N M
r 0r
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or

1ZirR a sin( b-
(78) Nr : 43L

The value of N for the sample design and a 98% reduction of shell
r

induced bending becomes 66 elements. The total number of elements of both

cross sections is determined by substituting the element length into equation

(11), which gives

N = 977.

The complete specification of the elements of the sample design is

1. Standard Element

Number - 911

Width - 1.10 inches

Depth - 3.42 inches

Length - 167. 0 inches

Weight - 55,400 lbs

2. Reinforced Elements

Number - 66

Width - 1.48 inches

Depth - 3.42 inches

Length - 167.0 inches

Weight - 5, 594 lbs
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MECHANICAL DESIGN OBJECTIVES

There are numerous mechanical design deficiencies existing in many

of the large radomes which have been built in the recent past. This fact was

made apparent during consultation with the personnel of several prominent

manufacturers c.f large space frame radomes as well as by the inspection of

the Haystack Installation. The most blatant deficiency seems to be in the area

of dielectric panel to element attachment. A result of manufacturing panels

of reinforced plastics within reasonable tolerances seems to be a condition of

relative slack in the individual panels' membranes after assembly. Such a

condition allows considerable furling of the panels due to wind pressure fluctu-

ation. Fatigue failures of the panels frequently occur at the panel vertices

which require undue and excessive maintenance. A possible solution or sup-

pression of this type problem would be effected if an attachmzent design was

generated which produced a pretension in the panel during installation. Such

a design objective is complicated by the optimum design conclusion that mini-

mum element width is desirable. A design concept is depicted in Figure 11

which has the merit of simplicity and warrants development consideration. The

extruded V-slot in the edge of the element would cam the reinforced panel taut

during depression of the panel into the slot by the rover plate. The camning

action would induce a prestress on the panel dependent on the pitch of the slot

and depth of depression.
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A second deficiency seems to exist in obtaining and maintaining ade-

quate weather seals. The panel to element seal could be significantly improved

if and when prestressed panels become reality due to the 4ncreased bearing

pressure and area of contact at the seal. The panel to hub seal is generally the

most difficult to obtain. By providing a panel-hub engagement slot in the hub

a forced and continuous attachment of the panel to the element and hub is possible.

Therefore, direct contact of a hub cover plate and the panel would allow for

generous surface for a continuous weather seal. Figure 12 schematically il-

lustrates such a panel-element-hub attachment scheme.

The preceding recommendations are intended only as conceptua1 pro-

posals which could be evaluated for det'ign feasibility and refinement. A multi-

tude of design improvements in the mechanical design of radomes all of which

require considerable analysis. Some of the areas for improvement include

erection procedures, reduction of manufacturing tolerances to a minimuinfnr

mating radome components, elimination of superfluous assembly hardware,

and the aforementioned panel pretension and weather seals each of which re-

quires individual and special attention.
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APPENDIX

DERIVATION OF EXPECTED SIDE LOBE LEVEL DUE TO RADOME

From equation (24) of Eli we may write the far field pattern in the

presence of a space frame as

21T a

(A1) F(u) dQ r dr(+g avf(r,q))f(r,Q)eJur cosrL

0 0

where f(r, ft) is the antenna aperture illumination, f (r, q) is the blocking

area ratio considered as a function of the polar coordinates r, Q (see p. 12

of [ij) and u = k sin 0 where 0 is the pattern observation angle. We shall

now find the expected value of the power pattern I F(u) 12 under the assumption

that /9(r, •t) is one of a large set of functions denumerated by a variable a

of known statistics approximating those of typical space frames. Hence we

write ?p(r, ) as p(r,q, a). The average value of ft(r,Q, a) is the average

blocking area ratio J2 so that

(A2) )p(rQ, a)da=ft, where fda=l

and the integrals are over all admissible a, normalized according to (A2).

We may then write the expected value of the power pattern from (Al)

as
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JF~u id• 2 11 2 aOFu) 2

(A3)

a Z2W a 2W

+ 7 gi2 pdp dq r d# 1 fl(r, )f(,)eJulr cos - p cos )

0 0 0 0

where F 0 (u) is the unpexturbed pattern and t.he inner integral

(A4) I d: P(r,,a)f (p, a)

may be computed for any given space frame statistics. On the basis of some

detailed computations a good approximation is believed to be Gaussian with the

scale length, the width of the element. It is quite obvious that two points more

than W apart are not highly correlated.

22

(A 5) 1 )f-f)e +f _ pe

-2 2
where Ir - p• = r2+ pZ. -rp cos( -Q).

If we make the further reasonable assumption that in the neighborhood

of appreciable correlation, Ir - p I < " W, f(r, Q) is virtually constant, we

may explicitly integrate the last term in (A3) to obtain
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(A 6) IF 2 ed1IJ1u) 1i + gavJ j 0(. )o• +fW gavje

?'u a

dý rf (rOr

0 0

The increase of pattern in the neighborhood of the first few side

lobes, where

-(uW/f2)2
(A7) e

relative to the peak is given then by

¶rpW2 Igavj 2 5 dt I0rf 2 (r, O)dr
(AS) 

avi a

11 S S rf(r, )dr• 2
00

The expression (28) in the text is an approximation to (A8) using (2) and

typical values of f(r,4•).
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DERIVATION OF EQUATION (1) Part I

The far field F 0 of an aperture anternna may be written as the

Fourier transform of its aperture illumination f(r, r1):

(A9) F 0 F (Q)\ f(r, j)e r dr dL

A 0

when 9 is a unit vector in the direction of observation, r is a vector from

the origin to the integration point, k is the wave number, and r and

are polar coordinates in the aperture.

The induced field ratio IFR of a set of scatterers in the antenna

beam (1) whose mutual "coupling can be neglected and (2) whose dimensions

projected into the antenna beam are small compared to variations in

f(r, V)ejkr" 0 and are non-overlapping, can be defined as g(r, q), equal to

either the IFR of the scatterer projecting to (r, q) or equal to zero if no

scatterer projects to r, il . In this case the scattered far field may be

written as

(AI0) F = F (0) = gIqflr, 1r dr drk.

A 0

If all of the scatterers have the same IFR, g, a constant, then (A10)

becomes

(All) F = yg f(r, q)eJkr'0r dr dL

A0
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where P is the ratio of the projected area occupied by the scatterers to the

total area of the beam, or the blocking area ratio. From (A9) an-d (All) we

may w.--te the total far field as

(A1Z) F=F 0+F =(l+Sg)F0 .

In the forward direction (2) above is satisfied for all practical

space frames and the relative power loss due to the radome is

(A13) G= F 1= I1+Jgz.
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